

Manual • Automated • Modular

Power Redefined

Our Power Sources are designed and supported in the USA. We're factory direct, so you'll never have to deal with a middle man. Our highly trained sales staff focuses on every customer no matter the size of the order. From our industry-leading warranty to our return and repair policies, we have redefined how the power source industry does business. When you compare our dedicated people and extensive support programs, you'll be sure to choose APT.

CHANGING the way the

 POWER SOURCEINDUSTRY

DOES BUSINESS

When you choose APT, you're choosing a partner that will continue to assist you throughout the life of your product, no matter what the application.

orifivive

We are committed to responsible manufacturing processes and environmental sustainability. Our Green Initiative is led by individuals throughout our organization who are committed to making day-to-day operations as green as possible.

SERVICE \& SUPPORT

No competitor can match our dedication to service and support. With 10 business day shipping on all models and 3 business day turnaround on all repairs, APT keeps your business up and running with minimal down-time.

TRADE-IN \& TRADE-UP

We are proud to have a generous and responsible trade-in program. It is our little way of saying thanks for continuing to use our instruments. Simply send us your old instrument and we'll give you a credit towards your purchase. We accept any brand, make or model towards your trade-in discount of your new APT instrument.*
*Offer only available in North America.

PowerTRAC ${ }^{\text {m }}$ AC Power Source Control and Data Capture Software
Our new PowerTRAC software takes the industry standard Power Source control software to the next level with data capture. Quickly export your test results to an Excel spreadsheet and improve traceabilty.

- Complete control from anywhere
- Real world simulation of voltage and frequency
- Visually see what your output and transients look like

AVAILABLE AS A FREE DOWNLOAD!

GUARANTEE

Quick Turnarounds on Calibrations and Repairs

We offer 2 business day turnaround on all calibrations. If your instrument needs service for any reason, we guarantee to have it repaired and shipped out of our facility within 3 business days of receiving it.

Product Reference Chart

	Output Power Capability									Output Configurations		
Model	$\begin{aligned} & 500 \\ & \text { VA } \end{aligned}$	$\begin{gathered} 1 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 2 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 3 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 4 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 6 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 8 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 12 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 18 \\ \text { kVA } \end{gathered}$	$\begin{gathered} 1 \\ \text { Phase } \end{gathered}$	Split 1 Phase (2 Lines/1 Neutral)	3 Phase
105	-									-		
LS500**	\bullet									\bullet		
LS1000**		\bullet								\bullet		
5005	-									-		
5010		\bullet								\bullet		
5020			\bullet							\bullet		
5040					\bullet					\bullet		
6005	-									\bullet		
6010		\bullet								\bullet		
6020			\bullet							\bullet		
6040					\bullet					\bullet		
7004	\bullet									\bullet		
7008		\bullet								\bullet		
7016			\bullet							\bullet		
7040					\bullet					\bullet		
310XAC		\bullet	x2	x3						x1	x2	x3
$320 X A C$			\bullet		x2	x3				x1	x2	x3
340XAC					\bullet		x2	x3		x1	x2	x3
360XAC						\bullet		x2	x3	x1	$\times 2$	x3
430XAC				\bullet						\bullet	\bullet	\bullet
460XAC						\bullet				\bullet	\bullet	\bullet

Product Reference Chart

	Output Capabilities of V, Hz \& A			General Features		
Model	Voltage Output Max	Frequency Output Range	$\begin{gathered} \text { Max A @ } \\ \leq 110 \mathrm{~V} / 220 \mathrm{~V} \\ \text { (per phase) } \end{gathered}$	PC Control	CE Mark	Free GUI Available
105	300	50/60	4.6A/2.3A			
LS500**	300	40-500	4.2A/2.1A		\bullet	
LS1000**	300	40-500	8.4A/4.2A		\bullet	
5005	300	40-450	4.6A/2.3A			
5010	300	40-450	9.2A/4.6A			
5020	300	40-450	18.4A/9.2A			
5040	300	40-450	36.8A/18.4A			
6005	300	40-500	4.6A/2.3A	\bullet		\bullet
6010	300	40-500	9.2A/4.6A	\bullet		-
6020	300	40-500	18.4A/9.2A	\bullet		\bullet
6040	300	40-500	36.8A/18.4A	\bullet		\bullet
7004	300	40-500	4.6A/2.3A	\bullet	\bullet	\bullet
7008	300	40-500	9.2A/4.6A	\bullet	\bullet	\bullet
7016	300	40-500	18.4A/9.2A	\bullet	\bullet	\bullet
7040	300	40-500	36.8A/18.4A	-	\bullet	\bullet
310XAC	300/600/520*	40-1000	9.2A/4.6A	\bullet	\bullet	\bullet
320XAC	300/600/520*	40-1000	18.4A/9.2A	\bullet	\bullet	\bullet
340XAC	300/600/520*	40-1000	36.8A/18.4A	\bullet	\bullet	\bullet
360XAC	300/600/520*	40-1000	55.2A/27.6A	-	\bullet	\bullet
430XAC	300/600/520*	40-1000	9.2A/4.6A	-	\bullet	\bullet
460XAC	300/600/520*	40-1000	18.4A/9.2A	\bullet	\bullet	\bullet

$x 2=$ the number of sources required to achieve an output rating
$x 3=$ the number of sources required to achieve an output rating and 3 phase.
$300 / 600 / 520^{*}=300 \mathrm{~V}$ phase $10,600 \mathrm{~V}$ split $10,520 \mathrm{~V} 30$
${ }^{* *}=$ Linear power sources

3 Phase AC Power Sources

With a unique feature set and competitive price point，our 400XAC Series provides $3 \emptyset$ AC power in a single box．Our exclusive SmartCONFIG feature allows you to switch from $1 \varnothing$ to $3 \varnothing$ or DC output with the push of a button．This maximizes your investment while giving you the AC power that your application needs．The 400XAC Series consists of two models：the 430XAC is a $3 \mathrm{kVA} A C$ power source and the 460XAC is a 6 kVA AC power source．

Features

－Exclusive SmartCONFIG feature allows for push button switch of $1 \varnothing, 3 \varnothing$ ，or DC output
－Single phase input power requirements
－ 50 built－in memory locations with 9 test steps
－Built－in power factor correction（PFC）
－Advanced metering circuits monitor voltage，current， peak current，power，apparent power，reactive power， power factor，and crest factor
－External voltage sensing for accurate metering
－Transient feature simulates voltage variations， brownouts，and transient voltage conditions
－Programmable starting and ending angle of the output sine wave
－Rack mount handle kit included

Standard

－USB／RS－232 Interface
Options
－GPIB Interface
－Ethernet Interface

Applicable Industries

Aerospace

Appliance

Laboratory

DRIVER AVAILABLE

INPUT			430×AC	460XAC
Phase			$1 \varnothing$	$1 \varnothing$ or $3 \varnothing$
Voltage			200-240 VAC	$1 \varnothing: 200 \sim 240 \mathrm{VAC} \pm 10 \%$ 3Ø3W: 200~240 VAC $\pm 10 \%$ $3 \emptyset 4 \mathrm{~W}$: $346 \sim 416 \mathrm{VAC} \pm 10 \%$
Frequency			47-63 Hz	
AC OUTPUT				
Power Rating	1ø2W		3000 VA	6000 VA
	1ø3W		Total 2000 VA (1000 VA per phase)	Total 4000 VA (2000 VA per phase)
	3Ø4W		Total 3000 VA (1000 VA per phase)	Total 6000 VA (2000 VA per phase)
	DC		3000 VA	6000 VA
Max. Current (RMS)	1Ø2W	5-150 V	27.6 A @ $\leq 110 \mathrm{~V}$	55.2 A @ $\leq 110 \mathrm{~V}$
		$5-300 \mathrm{~V}$	13.8 A @ $\leq 220 \mathrm{~V}$	27.6 A @ $\leq 220 \mathrm{~V}$
	1Ø3W	5-150 V	$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase	$18.4 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase
		5-300 V	4.6 A @ $\leq 220 \mathrm{~V}$ for per phase	9.2 A @ $\leq 220 \mathrm{~V}$ for per phase
	3 34W	5-150 V	$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase	$18.4 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase
		5-300 V	4.6 A @ $\leq 220 \mathrm{~V}$ for per phase	9.2 A @ $\leq 220 \mathrm{~V}$ for per phase
Inrush Current (peak)	1Ø2W	5-150 V	110.4 A	220.8 A
		5-300 V	55.2 A	110.4 A
	1Ø3W	$5-150 \mathrm{~V}$	36.8 A for per phase	73.6 A for per phase
		5-300 V	18.4 A for per phase	36.8 A for per phase
	$3 \varnothing 4 \mathrm{~W}$	5-150 V	36.8 A for per phase	73.6 A for per phase
		5-300 V	18.4 A for per phase	36.8 A for per phase
Phase			$1 \varnothing 2 \mathrm{~W}, 1 \varnothing 3 \mathrm{~W}, 3 \varnothing 4 \mathrm{~W}$, provided option	
THD (Total Harmonic Distortion)			$<0.5 \%$ (Resistive Load) at $40.0 \sim 70.0 \mathrm{~Hz}$ and output voltage within the 80~140 VAC at Low Range or the 160~280 VAC at High Range. oad) at $70.1 \sim 1000 \mathrm{~Hz}$ and output voltage within the $80 \sim 140$ VAC at Low Range or the $160 \sim 280$ VAC at High Range.	
Crest Factor			≥ 3	
Line Regulation			$\pm 0.1 \mathrm{~V}$	
Load Regulation (Hardware)			$\pm(1 \%$ of output $+1 \mathrm{~V})$ at Resistive Load, $<400 \mu \mathrm{~S}$ response time	
Load Regulation (Software)			$\pm 0.2 \mathrm{~V},<1 \mathrm{~S}$ response time	
DC offset			$\leq \pm 5 \mathrm{mV}$	
Poly-phase mode (364W) for per phase output setting			430XAC	460XAC
Voltage	Range		5.0~300 VAC (phase), 8.6~520 VAC (line), 150/300 V Auto Range	
	Accuracy		$\pm(0.2 \%$ of setting + 3 counts)	
Frequency	Range		$40 \sim 1000 \mathrm{~Hz}$ Full Range Adjust	
	Accuracy		$\pm 0.03 \%$ of setting	
 Ending Phase Angle	Range		0~359 ${ }^{\circ}$	
	Accuracy		$\pm 1^{\circ}(45 \sim 65 \mathrm{HZ})$	
Current Hi Limit	$5 \mathrm{~V} \sim 150 \mathrm{~V}$		0.01~9.20 A	0.01~18.40 A
	5V $\sim 300 \mathrm{~V}$		$0.01 \sim 4.60 \mathrm{~A}$	$0.01 \sim 9.20 \mathrm{~A}$
	Accuracy		\pm (2.0\% of setting +2 counts)	
OC Fold Back Response Time			$<1.4 \mathrm{~s}$	
Ramp-Up Timer (second)	Range		$0.0 \sim 999.9 \mathrm{~s}$	
	Accuracy		$\pm(0.1 \%+0.05 \mathrm{sec})$	
Ramp-Down Timer (second)	Range		$0.0 \sim 999.9 \mathrm{~s}$	
	Accuracy		$\pm(0.1 \%+0.05 \mathrm{sec})$	
Delay Timer	Range		$\begin{gathered} 1 \mathrm{~s} \sim 999.9 \mathrm{~s} \\ 0.1 \mathrm{~m} \sim 999.9 \mathrm{~min} \\ 0.1 \mathrm{~h} \sim 999.9 \mathrm{~h} \end{gathered}$	
	Accuracy		\pm (0.1\% + 0.1 sec)	
Dwell Timer	Range		$0,1 \mathrm{~s} 999.9 \mathrm{~h}$ (0=continuous)	
	Accuracy		$\pm(0.1 \%+0.1 \mathrm{sec})$	
Poly-phase mode (304W) for per phase measurement			430XAC	460XAC
Frequency	Range		$0.0-1000 \mathrm{~Hz}$	
	Resolution		0.1 Hz	
	Accuracy		$\pm 0.1 \mathrm{~Hz}(501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz}$)	
Voltage	Range		$0.0-420.0 \mathrm{~V}$	
	Resolution		0.1 V	
	Accuracy		\pm (0.2\% of reading + 3 counts)	

Specifications - 400XAC Series

Poly-phase mode (3Ø4W) for
per phase measurement

Range	L
	H
Accuracy	

Current (RMS)

Current (peak)		H
	Accuracy	
	Range	
		L
	Accuracy	

H

Power

I measurement

Frequency	Range	
	Accuracy	
Voltage	Range	
	Calculated Formula	
Current (RMS)	Range	L
		H
	Calculated Formula	L
		H
Power	Range	L
		H
	Accuracy	L
		H
Power Factor	Range	
	Resolution	
	Accuracy	
Power Apparent (VA)	Range	L
		H
	Calculated Formula	L
		H
Power Reactive (Q)	Range	L
		H
	Accuracy	L
		H

Single-phase mode (1ø2W)
Setting
Voltage

430XAC

460XAC

Voltage	Range
	Resolution
	Accuracy

Specifications - 400XAC Series

Single-phase mode (1б2W)

Setting

Frequency	Range
	Resolution
	Accuracy
 Ending Phase Angle	Range
	Resolution
Current Limit	Accuracy
	$5 \mathrm{~V} \sim 150 \mathrm{~V}$
	5V $\sim 300 \mathrm{~V}$
	Accuracy

OC Fold Back Response Time
Single-phase mode (102W)
measurement

Frequency	Range
	Accuracy
Current (RMS)	Range
	Range
	Accuracy
Current (peak)	Range
Power	Accuracy
Power Factor	Range
Power	Accuracy
Powaracy	
Apparent	Range
	Accuracy
Power	Range
Reactive (Q)	Accuracy
Crest Factor	Range
	Accuracy

Poly-phase mode (103W) for
per phase output setting

\section*{| Voltage | Range |
| :--- | :--- |
| | Accuracy |
| Frequency | Range |
| | Accuracy |
| $\begin{array}{l}\text { Starting \& } \\ \text { Ending Phase } \\ \text { Angle }\end{array}$ | Range |
| Current RI Limit | $5 \mathrm{~V} \sim 150 \mathrm{~V}$ |
| | $5 \mathrm{~V} \sim 300 \mathrm{~V}$ |
| | Accuracy |}

OC Fold Back Response Time

Poly-phase mode (103W) for per phase measurement

Frequency	Range	
	Accuracy	
Voltage	Range	
	Rccuracy	
	Range	L
		H
Current (RMS)		L
	Accuracy	

430XAC
460XAC
40~1000 Hz Full Range Adjust
0.1 Hz at $40.0 \sim 99.9 \mathrm{~Hz}, 1 \mathrm{~Hz}$ at $100 \sim 1000 \mathrm{~Hz}$
$\pm 0.03 \%$ of setting

0~359 ${ }^{\circ}$
1°

	$\pm 1^{\circ}(45 \sim 65 \mathrm{HZ})$		
$0.01 \sim 27.60 \mathrm{~A}$			$0.01 \sim 55.20 \mathrm{~A}$
$0.01 \sim 13.80 \mathrm{~A}$			$0.01 \sim 27.60 \mathrm{~A}$
	$\pm(2.0 \%$ of setting + 2 counts $)$		
	$<1.4 \mathrm{~s}$		

430XAC
460XAC
$0.0 \sim 1000 \mathrm{~Hz}$
$\pm 0.1 \mathrm{~Hz}(501 \sim 1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz})$
$0.0 \sim 420.0 \mathrm{~V}$
$\pm(0.2 \%$ of reading +3 counts $)$
$0.05 \mathrm{~A} \sim 39.00 \mathrm{~A}$
$\pm(1 \%$ of reading +5 counts) at $40.0 \sim 500 \mathrm{~Hz}$

0.05 A~78.00

$\pm(1 \%$ of reading +5 counts) at $501 \sim 1000 \mathrm{~Hz}, \pm(1 \%$ of reading +5 counts $)$ at $501 \sim 1000 \mathrm{~Hz}$, CF <1.5 and Current (peak) $\leq 82.8 \mathrm{~A}$

$$
\mathrm{CF}<1.5 \text { and Current (peak) } \leq 165.6 \mathrm{~A}
$$

0.0 A~114.0 A
0.0 A~228.0 A
\pm (1\% of reading +5 counts) at $40.0 \sim 70.0 \mathrm{~Hz}$
\pm (1.5% of reading +10 counts) at $70.1 \sim 500 \mathrm{~Hz}$
$\pm(1.5 \%$ of reading +10 counts $)$ at $501 \sim 1000 \mathrm{~Hz}$ and $\mathrm{CF}<1.5$
0 W~3900 W
0 W~7800 W
\pm (2% of reading +5 counts) at $40.0 \sim 500 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.2$
\pm (2% of reading +15 counts) at $501 \sim 1000 \mathrm{~Hz}$ and PF ≥ 0.5
0-1.000
W / VA, Calculated and displayed to three significant digits
0 VA~3900 VA
0 VA~7800 VA

VAR~7800 VAR
0 VAR~3900 VAR
V $\times \mathrm{A}$, Calculated value

$\mathrm{V} \times \mathrm{A}$, Calculated value	
$\sqrt{(\mathrm{VA})^{2}-(\mathrm{W})^{2}}$, Calculated value	
0 VAR~7800 VAR	

Ap / A, Calculated and displayed to two significant digits
430XAC 460 XAC

$\pm 0.1 \mathrm{~Hz}(501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz})$ $0.0-420.0 \mathrm{~V}$
\pm (0.2% of reading +3 counts)
$0.005 \mathrm{~A} \sim 1.200 \mathrm{~A}$
$0.005 \mathrm{~A} \sim 2.400 \mathrm{~A}$
1.00 A~13.00 A
$\pm(1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$
\pm (1% of reading +5 counts) at $501-1000 \mathrm{~Hz}$,
CF <1.5 and Current (peak) $\leq 3.6 \mathrm{~A}$
$\pm(1 \%$ of reading +5 counts $)$ at $40.0-500 \mathrm{~Hz}$
\pm (1% of reading +5 counts) at $501-1000 \mathrm{~Hz}$,
CF <1.5 and Current (peak) $\leq 27.6 \mathrm{~A}$

Specifications - 400XAC Series

DC MEASUREMENT		430XAC	460XAC
Voltage	Range	0.0-420.0 V	
	Accuracy	\pm (0.2% of setting +5 counts)	
Current	Range	0.05 A~19.50 A	$0.05 \mathrm{~A} \sim 39.00 \mathrm{~A}$
	Accuracy	\pm (1% of reading +5 counts)	
Power	Range	$0 \mathrm{~W} \sim 3900 \mathrm{~W}$	$0 \mathrm{~W} \sim 7800 \mathrm{~W}$
	Accuracy	\pm (2% of reading +5 counts)	
PROTECTION			
Software OCP		Over Current 110\% of full rated current >1 second	
Output Short Shut Down Speed		<1 second	
Software OPP		When over Power $105 \sim 110 \%$ of full power >5 second. When over Power $>110 \%$ of full power <1 second.	
Software OTP		Temperature over 95 degree C on the power amp and PFC heatsink	Temperature over 120 degree C and PFC heatsin
Software OVP	L	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +5 V When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +15 V When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +20 V	
	H	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +10 V When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +30 V When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +40 V	
Software LVP	L	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-5 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-15 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-20 \mathrm{~V}>0.5$ second	
	H	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-10 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-30 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-40 \mathrm{~V}>0.5$ second	
Reverse Current Protection (RCP)		Over 75W	
GENERAL			
Transient (only for $40 \sim 70 \mathrm{~Hz}$)		Trans-Volt 0.0-300.0 V Resolution 0.1 V Trans-Site $0^{\circ} \sim 359^{\circ}$ Resolution 1° Trans-Time $0.5-999.9 \mathrm{mS}$ Resolution 0.1 mS Trans-Cycle 0-9999, 0-Constant	
Operation Key Feature		Soft key, Numeric key, Rotary Knob	
Remote Input Signal		Test, Reset, Interlock, Recall program memory 1 through 7	
Remote Output Signal		Pass, Fail, Test-in Process	
Key Lock		Yes, Password Driven	
Memory		50 memories, 9 steps/memory	
Ext Trigger		START / END / BOTH / OFF in the Program mode, Output Signal 5 V , BNC type	
Alarm Volume Setting		Range: 0-9;0 OFF, 1 is softest volume, 9 is loudest volume.	
Graphic Display		240×64 dot resolution Monographic LCD/Contrast 9 Levels 1-9	
PFC		PF ≥ 0.97 at Full load	
Efficiency		$\geq 78 \%$ (at Full load)	
Auto Loop cycle		$0=$ Continuous, OFF, 2~9999	
Over Current Fold Back		On/Off, Setting On when output current over setting Hi-A value it will fold back output voltage to keep constant output current is setting Hi -A value, Response time <1400ms	
Safety Agency		CE Listed	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)		$430 \times 400.5 \times 500 \mathrm{~mm}$	
		$16.93 \times 15.77 \times 19.69$ in	
Net Weight		$105.8 \mathrm{lbs}(48 \mathrm{~kg}$)	$125.6 \mathrm{lbs}(57 \mathrm{~kg}$)
Operation Environment		0-40 $/ 20-80 \% \mathrm{RH}$	

Specifications subject to change

Why We Use Counts

APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

300XAC Series ct

Modular AC Power Sources

Our 300XAC Series modular AC power sources incorporate the latest in modular technology, making them ideal for the most demanding applications. These versatile AC power sources can be configured for $1 \varnothing$ stand-alone operation or linked together for up to 16.2 kVA of AC power in $1 \varnothing$ or up to 18 kVA of AC power in $3 \varnothing$ output configurations.

——园

300XAC SERIES PROGRAMmABLE AC POWER SOURCE $3 . \square \mathrm{ODOD}_{\mathrm{A}}$ Esi: \square

NI LabVIEW
DRIVER AVAILABLE
Powerildac AVAILABLE

Applicable

Aerospace

Laboratory

Options

- Grounded Neutral	- Ethernet Interface
. GPIB Interface	- Linking Card
.7 Remote Memories	

Features

- Modular design allows operator to connect up to 3 instruments together for $1 \varnothing$ or $3 \varnothing$ applications requiring up to 18 kVA of AC power

Configure 2 sources for $1 \varnothing / 2 \mathrm{~W}$ output voltages up to 600VAC

- 50 built-in memory locations with 9 test steps
- Standard DC output capability
- Transient feature simulates voltage variations, brownouts, and transient voltage conditions
- Constant current output with over current fold back feature
- Rack mount handle kit included

Standard

- USB/RS-232 Interface

APT Benefits

The Modular AC Source Advantage

What is a modular AC power source?

We use the term modular to define the capability of our 300XAC Series to be interconnected. The interconnection among up to three individual 300XAC Series Power Sources, allows for higher power outputs and different power configurations than an individual instrument could allow for Parallel or Polyphase modes.

What is Parallel mode?

Parallel mode allows the operator to increase the output current of the system by a factor of 2 or 3 depending on the number of sources that are interconnected.

What is Polyphase mode?

Polyphase mode allows the operator to increase the total power output of the system as well as change the output power configuration of the system.

Advantages

SmartDETECT

This exclusive feature automatically determines how many power sources are linked together. After the check is completed the 300XAC Series will automatically change the programming output function based on the number of linked sources.

SmartCONFIG Feature

This exclusive feature allows the operator to easily change the output of the linked sources to Parallel or Polyphase mode with the push of a button.

Master/Slave Relationship

The master/slave relationship between linked 300XAC instruments synchronizes the firmware of each power source so the output and phase angle separation is regulated. It also gives the operator the capability to program parameters for all linked sources from the front panel of the master instrument.

Exclusive Linking Card (option 08)

With the Linking Card option installed, up to three 300XAC instruments can be interconnected for Parallel or Polyphase output.

Benefits

- Easy to change from $1 \varnothing$ to $3 \varnothing$ output
- No need to have separate sources for $1 \varnothing$ to $3 \varnothing$ applications
- Greater mobility of the AC power sources
- Ability to generate $3 \varnothing$ power if only $1 \varnothing$ is available
- Allows for future expansion if power requirements change

Specifications - 300XAC Series

INPUT			310XAC	320XAC	340XAC	360XAC
Phase			$1 \varnothing$			$1 \varnothing$ or $3 \varnothing$
Voltage			100-240 VAC $\pm 10 \%$		200-240 VAC $\pm 10 \%$	$1 \varnothing: 200-240 \mathrm{VAC} \pm 10 \%$ 3Ø3W: 200-240 VAC $\pm 10 \%$ 3Ø4W: 346-416 VAC $\pm 10 \%$
Frequency			$47-63 \mathrm{~Hz}$			
OUTPUT						
Voltage			5-300 V			
Max Power			1 kVA	2 kVA	4 kVA	6 kVA
Max Current 1 \varnothing	0-150 V		$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$	18.4 A @ $\leq 110 \mathrm{~V}$	36.8 A @ $\leq 110 \mathrm{~V}$	55.2 A @ $\leq 110 \mathrm{~V}$
	0-300 V		$4.6 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 220 \mathrm{~V}$	18.4 A @ $\leq 220 \mathrm{~V}$	$27.6 \mathrm{~A} @ \leq 220 \mathrm{~V}$
Phase			$1 \varnothing$ (Parallel/Poly-Phase Linking for 103W or 3Ø4W)			
Frequency			$40.0-1000 \mathrm{~Hz}$			
THD			<1\% (Resistive Load)			
Crest Factor			Inrush CF ≥ 3 at 110 V, Continuous Current CF ≥ 3 at 110 V			
Line Regulation			$\pm 0.1 \mathrm{~V}$			
Load Regulation			$\pm 0.5 \mathrm{~V}$			
DC OUTPUT VOLTACE						
Voltage			$5-420 \mathrm{~V}$			
Max Power			1000 W	2000 W	4000 W	6000 W
Max Current 1ø	0-210 V		4.8 A	9.6 A	19.2 A	28.8 A
	0-420 V		2.4 A	4.8 A	9.6 A	14.4 A
Ripple \& Noise (Peak to Peak)			$<3.0 \mathrm{~V}$		<4.0 V	
MEASUREMENT						
Voltage	Range		0.0-400.0 V			
	Accuracy		\pm (1% of reading +2 counts) $>5 \mathrm{~V}$		\pm (1% of reading +5 counts) $>5 \mathrm{~V}$	
Frequency	Range		$0.0-1000 \mathrm{~Hz}$			
	Accuracy		$0.0-500 \mathrm{~Hz} \pm 0.1 \mathrm{~Hz}, 501-1000 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz}$			
Current (RMS)	Range		$0.005 \mathrm{~A}-13.00 \mathrm{~A}$	$0.005 \mathrm{~A}-26.00 \mathrm{~A}$	$0.05 \mathrm{~A}-52.00 \mathrm{~A}$	0.05 A - 78.00 A
	Accuracy		\pm (1% of reading +5 counts)		$\pm(1 \%$ of reading +5 counts) @ $40-100 \mathrm{~Hz}, \pm$ (1% of reading +5 counts) @ $101-500 \mathrm{~Hz}>0.1 \mathrm{~A}, \pm$ (1% of reading +5 counts) @ $501-1000 \mathrm{~Hz}>0.2 \mathrm{~A}$	
Current Peak	Range		0.0 A-38.0 A	0.0A-76.0 A	0.0 A-152 A	0.0A-228A
	Accuracy		\pm (1% of reading +5 counts)			
Power	Range		0.0 W-1300 W	$0.0 \mathrm{~W}-2600 \mathrm{~W}$	0.0W-5200 W	0.0 W-7800 W
	Accuracy	L	$\pm(2 \%$ of reading +15 counts) at $\mathrm{PF} \geq 0.2$		\pm (2% of reading +5 counts) at PF ≥ 0.2	
		H	\pm (2% of reading +5 counts) at PF ≥ 0.2			
Power Apparent (VA)	Range		$0.0 \mathrm{VA}-1300 \mathrm{VA}$	0.0 VA - 2600 VA	$0.0 \mathrm{VA}-5200 \mathrm{VA}$	0.0 VA - 7800 VA
	Calculated F		$\mathrm{V} \times \mathrm{A}$, Calculated value			
Power Reactive (Q)	Range		0.0 VAR-1300 VAR	0.0 VAR-2600 VAR	0.0 VAR-5200 VAR	0.0 VAR-7800 VAR
	Calculated Formula		$\sqrt{(\text { VA })^{2}-(\mathrm{W})^{2}}$, Calculated value			
Power Factor	Range		0.000-1.000			
	Calculated Formula		W/VA, Calculated and displayed to three significant digits			
Crest Factor	Range		0.0-10.0			
	Accuracy		A peak / Arms, Calculated and displayed to two significant digits			
OPTIONS						
Grounded Neutral Option 2			All Models			
GPIB Interface Option 3			All Models			
7 Remote Memory Option 4			All Models			
Ethernet Interface Option 6			All Models			
Linking Card Option 8			All Models			
cENERAL						
Operation Environment			0-40 ${ }^{\circ} \mathrm{C} / 20-80 \% \mathrm{RH}$			
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)			$16.92 \times 5.26 \times 20.87 \mathrm{in}$	$16.92 \times 5.26 \times 20.87$ in	$16.92 \times 10.51 \times 19.69$ in	$16.92 \times 15.77 \times 19.69$ in
			$430 \times 133.5 \times 530 \mathrm{~mm}$	$430 \times 133.5 \times 530 \mathrm{~mm}$	$430 \times 267 \times 500 \mathrm{~mm}$	$430 \times 400.5 \times 500 \mathrm{~mm}$
Net Weight			$47.16 \mathrm{lbs}(21 \mathrm{~kg}$)	49 lbs (22 kg)	$82 \mathrm{lbs}(37 \mathrm{~kg}$)	$117 \mathrm{lbs}(53 \mathrm{~kg}$)

Specifications - 300XAC Series

Linking Parallel Output 102W			310XAC	320XAC	340XAC	360XAC
Linked Unit			2-3 Units, 1ø2W (L1-N)			
Voltage	Phase		5-300 V			
Power Max	\# Units	2	1.8 kVA	3.6 kVA	7.2 kVA	10.8 kVA
		3	2.7 kVA	5.4 kVA	10.8 K 10.8 kVAA A	16.2 kVA
Max Current	0-150 V	L(2)	14.72 A @ $20 \mathrm{~V}-110 \mathrm{~V}$	29.44 A @ 20 V-110 V	58.88 A @ 20V-110 V	88.32 A @ 20V-110V
		L(3)	22.08 A @ 20V-110 V	44.16 A @ 20V-110 V	88.32 A @ 20V-110 V	132.48 A @ 20 V -110 V
Line (RMS)	$0-300 \mathrm{~V}$	H(2)	7.36 A @ 20V-220 V	14.72 A @ 20V-220V	29.44 A @ 20V-220V	44.16 A @ 20 V-220 V
		H(3)	11.04 A @ 20V-220V	22.08 A @ 20V-220 V	44.16 A @ 20V-220V	66.24 A @ 20 V-220 V
Linking Polyphase Output 103W			$310 \times A C$	$320 \times$ AC	$340 \times$ AC	360XAC
Linked Units			2 Units @ 180, 1Ø3W (L1-L2-N)			
Voltage	Phase		10-600 V			
	Line		$5-300 \mathrm{~V}$			
Power	Max		2 kVA	4 kVA	8 kVA	12 kVA
Max Current Phase	0-300 V	L(1)	$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$	18.4 A @ $\leq 110 \mathrm{~V}$	36.8 A @ $\leq 110 \mathrm{~V}$	55.2 A @ $\leq 110 \mathrm{~V}$
	0-600 V	H(1)	$4.6 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 220 \mathrm{~V}$	18.4 A @ $\leq 220 \mathrm{~V}$	27.6 A @ $\leq 220 \mathrm{~V}$
Max Current Line	0-300 V	L(2)	$9.2 \mathrm{~A} @ \leq 220 \mathrm{~V}$	18.4 A @ $\leq 220 \mathrm{~V}$	36.8 A @ 5220 V	55.2 A @ $\leq 220 \mathrm{~V}$
	0-600 V	H(2)	$4.6 \mathrm{~A} @ \leq 440 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 440 \mathrm{~V}$	18.4 A @ ≤ 440 V	27.6 A @ ≤ 440 V
Linking Polyphase Output 304W			310XAC	$320 \times$ AC	340XAC	360XAC
Linked Units			3 Units @ 1200, 3ø4W (L1-L2-L3-N)			
Voltage	Phase		5-300 V			
	Line		5-520 V			
Power	Max		3 kVA	6 kVA	12 kVA	18 kVA
Max Current Phase	0-150 V	L(1)	$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$	18.4 A @ $\leq 110 \mathrm{~V}$	36.8 A @ $\leq 110 \mathrm{~V}$	55.2 A @ $\leq 110 \mathrm{~V}$
	0-300 V	H(1)	$4.6 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 220 \mathrm{~V}$	18.4 A @ $\leq 220 \mathrm{~V}$	27.6 A @ $\leq 220 \mathrm{~V}$
Max Current Line	0-150 V	L(3)	9.2 A @ $\leq 190.5 \mathrm{~V}$	18.4 A @ 5190.5 V	36.8 A @ 5190.5 V	55.2 A @ 5190.5 V
	0-300 V	H(3)	$4.6 \mathrm{~A} @ \leq 381 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 381 \mathrm{~V}$	18.4 A @ $\leq 381 \mathrm{~V}$	27.6 A @ $\leq 381 \mathrm{~V}$
Max Current Phase Delta	0-260 V	L(3)	5.31 A @ $\leq 190.5 \mathrm{~V}$	10.62 A @ $\leq 190.5 \mathrm{~V}$	21.24 A @ $\leq 190.5 \mathrm{~V}$	31.87 A @ $\leq 190.5 \mathrm{~V}$
	0-520 V	H(3)	2.65 A @ $\leq 381 \mathrm{~V}$	5.31 A @ $\leq 381 \mathrm{~V}$	10.62 A @ ≤ 381 V	15.93 A @ $\leq 381 \mathrm{~V}$
Linking Parallel DC Output 1\%2W			310XAC	$320 \times$ AC	340XAC	360XAC
Linked Units			2-3 Units, 1ø2W (L1-N)			
Voltage Power	Line		5-420 V			
Power Max	\# Units	2	1.8 kVA	3.6 kVA	7.2 kVA	10.8 kVA
		3	2.7 kVA	5.4 kVA	10.8 kVA	16.2 kVA
Max Current	0-210V	L(2)	7.68 A @ 50V-210V	15.36 A @ 50V-210V	30.72 A @ 50V-210 V	46.08 A @ 50V-210 V
		L(3)	$11.52 \mathrm{~A} @ 50 \mathrm{~V}-210 \mathrm{~V}$	$23.04 \mathrm{~A} @ 50 \mathrm{~V}-210 \mathrm{~V}$	46.08 A @ 50V-210V	69.12 A @ 50 V - 210V
Line	0-420V	H(2)	$3.84 \mathrm{~A} @ 50 \mathrm{~V}-420 \mathrm{~V}$	7.68 A @ 50V-420V	15.36 A @ 50V-420V	23.04 A @ 50V-420 V
		H(3)	5.76 A @ 50 V-420 V	11.52 A @ $50 \mathrm{~V}-420 \mathrm{~V}$	$23.04 \mathrm{~A} @ 50 \mathrm{~V}-420 \mathrm{~V}$	$34.56 \mathrm{~A} @ 50 \mathrm{~V}-420 \mathrm{~V}$

Specifications - 300XAC Series

Measurement (Total) Linking Parallel 102W			310XAC	320XAC	340XAC	360XAC
Voltage	Range		0.0-400.0 V			
	Accuracy		\pm (1% of reading +2 counts $)>5 \mathrm{~V}$		\pm (1% of reading +5 counts) $>5 \mathrm{~V}$	
Frequency	Range		$0.0-1000.0 \mathrm{~Hz}$			
	Accuracy	L	$\pm 0.1 \mathrm{~Hz} @ 0.0-500 \mathrm{~Hz}$			
		H	$\pm 0.2 \mathrm{~Hz} @ 501-1000 \mathrm{~Hz}$			
Current (RMS)	Range	2	0.00 A-26.00 A	$0.00 \mathrm{~A}-52.00 \mathrm{~A}$	0.00 A-104.0 A	0.00 A-156.0 A
		3	0.00 A-39.00 A	0.00 A-78.00 A	0.00 A-156.0 A	0.00 A-234.0 A
	Accuracy	L	$\pm(1.5 \%$ of reading +15 counts) x \# of Linked Units @ $40.0-70.0 \mathrm{~Hz} \&$ Current is $>1.0 \mathrm{~A}$		\pm (1.5\% of reading +15 counts) x Link Units @ 40.0-70.0 Hz and Current (RMS) $>2.00 \mathrm{~A}, \pm(1.5 \%$ of reading +15 counts) x Link Units @ 70.1-1000 Hz, and Current (RMS) $>10.00 \mathrm{~A}$	\pm (1.5% of reading +15 counts) x Link Units @ 40.0-70.0 Hz and Current (RMS) >3.00 A, \pm (1.5% of reading +15 counts) x Link Units @ 70.1-1000 Hz, and Current (RMS) > $>15.00 \mathrm{~A}$
		H	\pm (1.5% of reading +15 counts) x \# of Linked Units @ 70.1-1000 Hz \& Current is >5.00 A			
Power (W)	Range	2	OW-2600 W	0 W-5200 W	OW-10400 W	OW-15600 W
		3	OW-3900 W	0 W-7800 W	O W-15600 W	OW-23400 W
	Accuracy		$\begin{aligned} & \pm(2 \% \text { of reading }+10 \text { counts) } x \text { (\# of Linked Units) at PF } \geq 0.2,40-500 \mathrm{~Hz} \text {, and Current }>5.0 \mathrm{~A} \\ & \pm(2 \% \text { of reading }+10 \text { counts) } \times(\# \text { of Linked Units) at PF } \geq 0.3,501-1000 \mathrm{~Hz} \text {, and Current }>5.0 \mathrm{~A} \end{aligned}$			
Power Apparent (VA)	Range	2	$0 \mathrm{~W}-2600 \mathrm{VA}$	0 W-5200 VA	$0 \mathrm{~W}-10400 \mathrm{VA}$	0 W - 15600 VA
		3	0 W - 3900 VA	O W-7800 VA	0 W - 15600 VA	O W-23400 VA
	Accuracy		$\mathrm{V} \times \mathrm{A}$, Calculated Value			
Power Reactive (Q)	Range	2	$0 \mathrm{~W}-2600 \mathrm{VA}$	0 W-5200 VA	0 W -10400 VA	0 W - 15600 VA
		3	0 W - 3900 VA	0 W-7800 VA	0 W - 15600 VA	0 W-23400 VA
	Accuracy		$\sqrt{(\mathrm{VA})^{2}-(\mathrm{W})^{2}}$, Calculated Value			
Power Factor	Range		0-1.000			
	Accuracy		W / VA, Calculated and displayed to three significant digits			
Measurement (Total) Linking Polyphase 163W			310XAC	320XAC	340XAC	360XAC
Voltage	Range $\quad 2$		L1 Voltage + L2 Voltage			
	Accuracy		Summation of linked sources, Calculated and displayed to one significant digit			
Frequency	Range		$0.0-1000.0 \mathrm{~Hz}$			
	Accuracy	L	$\pm 0.1 \mathrm{~Hz} @ 0.0-500 \mathrm{~Hz}$			
		H	$\pm 0.2 \mathrm{~Hz} @ 501-1000 \mathrm{~Hz}$			
Current (RMS)	Range 2 Accuracy		(L1 Current + L2 Current)/2			
	Accuracy		$\begin{aligned} & \quad \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 40-70 \mathrm{~Hz} \\ & \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 70.1-500 \mathrm{~Hz} \text {, and output current }(\mathrm{RMS})>0.200 \mathrm{~A} \\ & \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 501-1000 \mathrm{~Hz} \text {, and output current }(\mathrm{RMS})>0.300 \mathrm{~A} \end{aligned}$			
Power (W)	Range	2	L1 Power + L2 Power			
	Accuracy	2	L1 Power + L2 Power, Calculated Value			
Power Apparent (VA)	Range	2	$\mathrm{L} 1 \mathrm{VA}+\mathrm{L} 2 \mathrm{VA}$			
	Accuracy	2	L1 VA + L2 VA, Calculated Value			
Power Reactive (Q)	Range Accuracy	2	L1 VAR + L2 VAR			
		2	L1 VAR + L2 VAR, Calculated Value			
Power Factor	Range		$0-1.000$			
	Accuracy		(L1 P + L2 P) / (L1 VA + L2 VA), Calculated and displayed to three significant digits			

Specifications - 300XAC Series

Measurement (Total) Linking Polyphase 3Ø4V			310XAC	320XAC	340XAC	360XAC
Voltage	Range		$(\mathrm{A}+\mathrm{B}+\mathrm{C}) / 3$			
	Accuracy		$(\mathrm{A}+\mathrm{B}+\mathrm{C}) / 3$, Calculated and displayed to one significant digit			
Frequency	Range		$0.0-1000.0 \mathrm{~Hz}$			
	Accuracy	L	$\pm 0.1 \mathrm{~Hz} @ 0.0-500 \mathrm{~Hz}$			
		H	$\pm 0.2 \mathrm{~Hz}$ @ 501-1000 Hz			
Current (RMS)	Range		$(\mathrm{A}+\mathrm{B}+\mathrm{C}) / 3$			
	Accuracy		$\begin{aligned} & \quad \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 40-70 \mathrm{~Hz} \\ & \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 70.1-500 \mathrm{~Hz} \text {, and output current }(\mathrm{RMS})>0.200 \mathrm{~A} \\ & \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 501-1000 \mathrm{~Hz} \text {, and output current }(\mathrm{RMS})>0.300 \mathrm{~A} \end{aligned}$			
Power (W)	Range		A Power +B Power + C Power			
	Accuracy		Calculated Value			
Power Apparent (VA)	Range		$A V A+B V A+C V A$			
	Accuracy		Calculated Value			
Power Reactive (Q)	Range		A VAR + B VAR + CVAR			
	Accuracy		Calculated Value			
Power Factor	Range		0-1.000			
	Accuracy		Sum P / Sum VA, Calculated and displayed to three significant digits			
Measurement (Total) Linking Parallel DC			310XAC	320XAC	340XAC	360XAC
Voltage	Range		0.0-420.0 V			
	Accuracy		\pm (1% of reading +2 counts) $>5 \mathrm{~V}$		$\pm(1 \%$ of reading +5 counts) $>5 \mathrm{~V}$	
Current (RMS)	Range	2	0.05 A - 26.00 A	$0.05 \mathrm{~A}-52.00 \mathrm{~A}$	$0.05 \mathrm{~A}-104.00 \mathrm{~A}$	$0.05 \mathrm{~A}-156.00 \mathrm{~A}$
		3	0.05 A - 39.00 A	0.05 A - 78.00 A	0.05 A - 156.00 A	$0.05 \mathrm{~A}-234.00 \mathrm{~A}$
	Accuracy		\pm (1% of reading +5 counts) x \# of Linked Units, Current $>1.00 \mathrm{~A}$		\pm (1% of reading +5 counts) x \# of Linked Units, Current $>2.00 \mathrm{~A}$	\pm (1% of reading +5 counts) $x \#$ of Linked Units, Current >3.00 A
Power (W)	Range	2	OW-2600 W	0 W-25200 W	O W-10400 W	OW-15600 W
		3	0 W-3900 W	0 W-7800 W	0 W-15600 W	0 W-23400 W
	Accuracy		\pm (2% of reading +5 counts) x \# of Linked Units			

Specifications subject to change

Why We Use Counts

APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

Key
L = Low Limit Range
L (2) = Low Limit Range 2 Units Linked
$H(2)=$ High Limit Range 2 Units Linked
$2=2$ Units Linked
$\mathrm{H}=$ High Limit Range L (3) = Low Limit Range 3 Units Linked H (3) = High Limit Range 3 Units Linked 3 = 3 Units Linked

7000 Series cєөде

Automated AC Power Sources

Our 7000 Series automated AC power sources are ideal for advanced applications at a competitive price. Switch-mode technology and a direct coupled output make these sources lightweight and efficient for use on the bench-top or in a rack mount system. The graphic LCD display provides metering data on the front panel and the easy-to-use local interface allows operators to get tests up and running quickly.

Features

- 50 built-in memory locations with 9 test steps

Surge/Drop features simulate voltage variations, brownouts and transient voltage conditions

- Programmable starting and ending angle of the output sine wave
- Metering circuits monitor voltage, current, peak current, power, apparent power, reactive power, power factor, and crest factor

Constant current output with over current fold back feature

Front panel lockout via password protection

- Rack mount handle kit included

Options

-Grounded Neutral	$\cdot 7$ Remote Memories
. GPIB Interface	\cdot Ethernet Interface

APT Benefits

Aerospace

Appliance

Lighting

Medical

INPUT			7004	7008	7016	7040
Phase			$1 \varnothing$			
Voltage			115/230 VAC $\pm 10 \%$		$230 \mathrm{VAC} \pm 10 \%$	
Frequency			$47-500 \mathrm{~Hz}$			
OUTPUT						
Voltage			0-300 V		5-300 V	
Max Power			400 VA*	800 VA*	1600 VA*	4000 VA
Max Current $1 \varnothing$	0-150 V		4.6 A @ ≤ 110 V	9.2 A @ $\leq 110 \mathrm{~V}$	18.4 A @ $\leq 110 \mathrm{~V}$	36.8 A @ 1110 V
	0-300 V		$2.3 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$4.6 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 220 \mathrm{~V}$	18.4 A @ 5220 V
Phase			$1 \varnothing$			
Frequency			$40.0-500 \mathrm{~Hz}$			
THD			< 1\% (Resistive Load)			
Crest Factor			≥ 3			
Line Regulation			$\pm 0.1 \mathrm{~V}$			
Load Regulation			$\pm(0.5 \%$ of output $+0.5 \mathrm{~V})$ at Resistive Load			
MEASUREMENT						
Voltage	Range		0.0-400.0 V			
	Accuracy		\pm (1\% of reading +2 counts)		$\pm(1 \%$ of reading +5 counts) $>5 \mathrm{~V}$	
Frequency	Range		$0.0-500 \mathrm{~Hz}$			
	Accuracy		$\pm 0.1 \mathrm{~Hz}$			
Current (RMS)	Range		0.005 A - 6.50 A	$0.005 \mathrm{~A}-13.00 \mathrm{~A}$	0.05 A - 26.00 A	0.05 A - 52.00 A
	Accuracy		\pm (1% of reading +5 counts)			
Current Peak	Range		0.0 A-19.0 A	0.0 A-38.0 A	0.0 A-76.0 A	0.0 A-152.0 A
	Accuracy		\pm (1% of reading +5 counts)			
Power	Range		0.0 W-650 W	$0.0 \mathrm{~W}-1300 \mathrm{~W}$	$0.0 \mathrm{~W}-2600 \mathrm{~W}$	0.0 W-5200 W
	Accuracy	L	$\pm(2 \%$ of reading +15 counts) at PF >0.2		\pm (2% of reading +30 counts) at PF >0.2	\pm (2% of reading +5 counts) at PF ≥ 0.2 Voltage $>5 \mathrm{~V}$ Current $>0.05 \mathrm{~A}$
		H	$\pm(2 \%$ of reading +5 counts $)$ at $\mathrm{PF}>0.2$		$\begin{gathered} \pm(2 \% \text { of reading }+10 \text { counts }) \text { at } \\ \text { PF }>0.2 \end{gathered}$	
Power Factor	Range		0.000-1.000			
	Accuracy		W/VA, Calculated and displayed to three significant digits			
CENERAL						
Rackmount Handles			Standard			
USB/RS-232 Interface			Standard			
Lockout			Key lockout or password protection			
Front Output			Universal Receptacle	Universal Receptacle	Universal Receptacle	-
Efficiency			$\geq 80 \%$ (at Full Load)			
Operation Environment			0-40 ${ }^{\circ} \mathrm{C} / 20-80 \% \mathrm{RH}$			
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)			$16.92 \times 3.50 \times 15.75$ in	$16.92 \times 3.50 \times 15.75$ in	$16.92 \times 3.50 \times 19.69$ in	$16.92 \times 8.74 \times 19.69$ in
			$430 \times 89 \times 400 \mathrm{~mm}$	$430 \times 89 \times 400 \mathrm{~mm}$	$430 \times 89 \times 500 \mathrm{~mm}$	$430 \times 222 \times 500 \mathrm{~mm}$
Net Weight			36.4 lbs (16.5 kg)	40 lbs (18.2 kg)	$66 \mathrm{lbs}(30 \mathrm{~kg}$)	143.3 lbs (65 kg)

Specifications subject to change

*Output Power and Power Factor Considerations

The reactive output power specification of models 7004,7008 , and 7016 change depending on the power factor of the load. While the 7004,7008 , and 7016 are specified as $400 \mathrm{VA}, 800 \mathrm{VA}$, and 1.6 kVA units respectively, they can actually output up to 25% more reactive power based on the power factor of the load, thus keeping the real power under the specified limit. The reactive power is at its peak when the power factor $=0.8$. See chart below for more information:

Why We Use Counts

APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

	7004	7008	7016
Output Power at $p f \leq 0.8$	$500 \mathrm{VA} @ \leq 400 \mathrm{~W}$	$1000 \mathrm{VA} @ \leq 800 \mathrm{~W}$	$2000 \mathrm{VA} @ \leq 1600 \mathrm{~W}$
Output Power at pf >0.8	$400 \mathrm{VA} @ \leq 400 \mathrm{~W}$	$800 \mathrm{VA} @ \leq 800 \mathrm{~W}$	$1600 \mathrm{VA} @ \leq 1600 \mathrm{~W}$

6000 Series

Automated AC Power Sources

Our 6000 Series of automated AC power sources are ideal for applications where PC control is ideal to capture metering and testing results from the source. We provide LabVIEW drivers and PowerTRAC ${ }^{\text {TM }}$ software free of charge, to assist you in getting your power source up and running in no time. Our simple to use front panel interface is ideal for customers that are not interested in using a PC and need the flexibility to operate the source at a moments notice for quick testing.

NI LabVIEW
DRIVER AVAILABLE

Features

50 built-in memory locations with 9 test steps
DC output capability (optional)
Surge/Drop features simulate voltage variations, brownouts and transient voltage conditions

Programmable starting and ending angle of the output sine wave

- Metering circuits monitor voltage, current, peak current, power, apparent power, reactive power, power factor, and crest factor

Constant current output with over current fold back feature

Front panel lockout via password protection
Rack mount handle kit included

Standard

USB/RS-232 Interface

Options

230 VAC $\pm 10 \%$	$\cdot 7$ Remote Memories
Grounded Neutral	. Ethernet Interface
GPIB Interface	. DC Output

- DC Output

INPUT			6005	6010	6020	6040
Phase			$1 \varnothing$			
Voltage			115/230 VAC $\pm 10 \%$		208 VAC $\pm 10 \%$	
Frequency			$47-500 \mathrm{~Hz}$			
OUTPUT						
Voltage			0-300 V		5-300 V	
Max Power			500 VA	1 kVA	2 kVA	4 kVA
Max Current $1 \varnothing$	0-150 V		4.6 A @ $\leq 110 \mathrm{~V}$	9.2 A @ $\leq 110 \mathrm{~V}$	18.4 A @ $\leq 110 \mathrm{~V}$	36.8 A @ $\leq 110 \mathrm{~V}$
	0-300V		$2.3 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$4.6 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 220 \mathrm{~V}$	18.4 A @ $\leq 220 \mathrm{~V}$
Phase			$1 \varnothing$			
Frequency			$47-500 \mathrm{~Hz}$			
THD			<1\% (Resistive Load)			
Crest Factor			≥ 3			
Line Regulation			$\pm 0.1 \mathrm{~V}$			
Load Regulation			$\pm(0.5 \%$ of output $+0.5 \mathrm{~V})$ at Resistive Load			
MEASUREMENT						
Voltage	Range		0.0-400.0 V			
	Accuracy		\pm (1\% of reading +2 counts)		\pm (1% of reading +5 counts) $>5 \mathrm{~V}$	
Frequency	Range		$0.0-500 \mathrm{~Hz}$			
	Accuracy		$\pm 0.1 \mathrm{~Hz}$			
Current (RMS)	Range		0.005 A - 6.50 A	$0.005 \mathrm{~A}-13.00 \mathrm{~A}$	0.05 A - 26.00 A	0.05 A - 52.00 A
	Accuracy		\pm (1% of reading +5 counts)			
Current Peak	Range		0.0 A-19.0 A	0.0A-38.0 A	0.0 A-76.0 A	0.0 A-152.0 A
	Accuracy		\pm (1% of reading +5 counts)			
Power	Range		0.0W-650 W	$0.0 \mathrm{~W}-1300 \mathrm{~W}$	0.0 W-2600 W	0.0W-5200 W
	Accuracy	L	\pm (2% of reading +15 counts)	\pm (2% of reading +30 counts)	\pm (2% of reading +5 counts)	
		H	\pm (2% of reading +5 counts)	\pm (2% of reading + 10 counts)		
Power Factor	Range		0.000-1.000			
	Accuracy		W/VA, Calculated and displayed to three significant digits			
GENERAL						
Rack Mount Kit			Standard			
USB/RS-232 Interface			Standard			
Lockout			Key lockout or password protection			
Efficiency			$\geq 80 \%$ (at Full Load)			
Operation Environment			0-40 ${ }^{\circ} \mathrm{C} / 20-80 \% \mathrm{RH}$			
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)			$16.92 \times 3.50 \times 15.75$ in	$16.92 \times 3.50 \times 15.75$ in	$16.92 \times 3.50 \times 19.69$ in	$16.92 \times 8.74 \times 19.69$ in
			$430 \times 89 \times 400 \mathrm{~mm}$	$430 \times 89 \times 400 \mathrm{~mm}$	$430 \times 89 \times 500 \mathrm{~mm}$	$430 \times 222 \times 500 \mathrm{~mm}$
Net Weight			36.4 lbs (16.5 kg)	$40 \mathrm{lbs}(18.2 \mathrm{~kg})$	$66 \mathrm{lbs}(30 \mathrm{~kg}$)	$143.3 \mathrm{lbs}(65 \mathrm{~kg}$)
DC OUTPUT VOLTAGE						
Voltage			0-400 V			
Max Power			250 W	500 W	1000 W	2000 W
Max Current	0-200 V		2.3 A	4.6 A	9.2 A	18.4 A
	$0-400 \mathrm{~V}$		1.5 A	2.3 A	4.6 A	9.2 A
Ripple \& Noise (RMS)			$0-200 \mathrm{~V}<250 \mathrm{mV}$ \& $0-400 \mathrm{~V}<400 \mathrm{mV}$		0-200V $<350 \mathrm{mV}$ \& $0-400 \mathrm{~V}<400 \mathrm{mV}$	

Specifications subject to change

[^0]
5000 Series

Manual AC Power Sources

Our 5000 Series manual AC power sources are lightweight and efficient while providing a robust feature set. Ideal for benchtop applications, they feature four LED displays that monitor voltage, current, frequency, power, and power factor. The easy-to-use local push-button interface allows you to quickly set-up and change parameters with ease while built-in safety features protect the instrument, the operator, and the DUT ensuring a safe work environment.

Features

- 3 built-in memory locations to store and quickly recall test parameters
- LED displays monitor voltage, current, frequency, and power / power factor

Independent, adjustable high and low limits for voltage, current, and frequency

- Power Up feature configures the output relay for quick and efficient testing
- Constant current output with over current fold back feature
- Front panel lockout

Options

230 VAC $\pm 10 \%$
Grounded Neutral

APT Benefits

Medical

INPUT		5005	5010	5020	5040
Phase		$1 \varnothing$			
Voltage		115/230 VAC $\pm 10 \%$		$208 \mathrm{VAC} \pm 10 \%$	
Frequency		47-500 Hz			
OUTPUT					
Voltage		0-300 V		$5-300 \mathrm{~V}$	
Max Power		500 VA	1 kVA	2 kVA	4 kVA
Max Current $1 \varnothing$	0-150 V	4.6 A @ $\leq 110 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$	18.4 A @ $\leq 110 \mathrm{~V}$	36.8 A @ $\leq 110 \mathrm{~V}$
	0-300 V	$2.3 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$4.6 \mathrm{~A} @ \leq 220 \mathrm{~V}$	$9.2 \mathrm{~A} @ \leq 220 \mathrm{~V}$	18.4 A @ $\leq 220 \mathrm{~V}$
Phase		$1 \varnothing$			
Frequency		$40.0-450 \mathrm{~Hz}$			
THD		<1\% (Resistive Load)			
Crest Factor		≥ 3			
Line Regulation		$\pm 0.1 \mathrm{~V}$			
Load Regulation		$\pm(0.5 \%$ of output $+0.5 \mathrm{~V})$ at Resistive Load			
MEASUREMENT					
Voltage	Range	0.0-400.0 V			
	Accuracy	\pm (1\% of reading +2 counts)		\pm (1% of reading +5 counts) $>5 \mathrm{~V}$	
Frequency	Range	$0.0-500 \mathrm{~Hz}$			
	Accuracy	$\pm 0.1 \mathrm{~Hz}$			
Current (RMS)	Range	$0.00 \mathrm{~A}-6.50 \mathrm{~A}$	0.00 A-13.00 A	0.00 A-26.00 A	0.05 A - 52.00 A
	Accuracy	\pm (1\% of reading +5 counts)			
Power	Range	0.0 W-650 W	$0.0 \mathrm{~W}-1300 \mathrm{~W}$	$0.0 \mathrm{~W}-2600 \mathrm{~W}$	0.0 W-5200 W
	Accuracy	\pm (2% of reading + 10 counts) at PF ≥ 0.2			
Power Factor	Range	0.000-1.000			
	Accuracy	W/VA, Calculated and displayed to three significant digits			
CENERAL					
Lockout		Key lockout			
Inrush Current		4 times the max rated current			
Enhanced Over Load Protection		4 times of rating current, Over Current 110\% can be held for 1000ms w/o shutdown of output			
Over Current Foldback		Constant Current Mode (Voltage output varies to maintain current output based on load)			
Memories		3 Programmable Memory Locations			
Front Output		Universal Receptacle			
Rear Output		-	-	Universal Receptacle	Terminal Block
Displays		4 LED Displays			
Operation Key Feature		Up/Down Arrow Keys			
Voltage Limits		Programmable High \& Low Limits			
Frequency Limits		Programmable High \& Low Limits			
Power Up Settings		Specify Output Power Condition on Power Up (On, Off, Last)			
Protection Circuits		Over Current, Over Voltage, Over Power, Over Temperature			
Efficiency		$\geq 80 \%$ (at Full Load)			
Operation Environment		$0-40^{\circ} \mathrm{C} / 20-80 \% \mathrm{RH}$			
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)		$16.92 \times 3.50 \times 11.81$ in	$16.92 \times 3.50 \times 15.75$ in	$16.92 \times 3.50 \times 19.69$ in	$16.92 \times 8.74 \times 19.69$ in
		$430 \times 89 \times 300 \mathrm{~mm}$	$430 \times 89 \times 400 \mathrm{~mm}$	$430 \times 89 \times 500 \mathrm{~mm}$	$430 \times 222 \times 500 \mathrm{~mm}$
Net Weight		36.4 lbs (16.5 kg)	40 lbs (18.2 kg)	$66 \mathrm{lbs}(30 \mathrm{~kg}$)	$143.3 \mathrm{lbs}(65 \mathrm{~kg}$)

Why We Use Counts
APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

LS Series C © (4)

Linear AC Power Sources

Our LS Series linear AC power sources provide clean, regulated power at competitive prices. Linear technology reduces total harmonic distortion (THD) across the instrument's output frequency range and improves performance for high crest factor loads. Four LED displays monitor voltage, current, frequency, power, and power factor while the easy-to-use local push-button interface allows operators to quickly set and change test parameters with ease. Built-in safety features protect the instrument, the operator, and the DUT ensuring a safe work environment.

Features

- 3 built-in memory locations
- 50/60 Hz quick selection keys
- Metering circuits monitor voltage, current, frequency and power
- Constant current output with over current fold back feature
- Front panel lockout
- Programmable high and low limits for voltage, current and frequency
- Low range metering into milliwatts for power (optional)
- Push-button interface for easy setup
- Test/Reset key quickly disables output voltage
- Front panel calibration

Options

- Grounded Neutral
- 7 Remote Memories

Low Range .1mA/.01W Resolution

Applicable

Aerospace

Laboratory

Lighting

Medical

APT Benefits

[^1]
Variplus®

Power Converter

The VariPLUS ${ }^{\circledR}$ is a power converter specifically designed for testing in the production line or laboratory environment. The VariPLUS out performs the traditional variable transformer on multiple levels that include metering, automatic voltage, and frequency adjustments to the load. Easily produce variable output voltages between 0-300 VAC with selectable frequency at $50 / 60 \mathrm{~Hz}$ to satisfy your product testing requirements. Simple adjustments are made through dedicated keys and a rotary knob. The universal receptacle provides multi-national connections while providing operator protection.

-

Features

Isolated output ensures the power provided to the DUT is free from distortion, voltage spikes, and other transients

Push-button interface for $50 / 60 \mathrm{~Hz}$ output
SmartVOLT feature allows the operator to configure the instrument to power up at 0 volts or the previously used voltage before the instrument was turned off

Metering circuits monitor voltage, current, frequency, and power

Output/Reset key maximizes operator safety by enabling and disabling the output with a simple push-button

Power Up feature configures the output relay for quick and efficient testing

Front panel lockout

Options

Grounded Neutral

Why We Use Counts

APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

THROUGHOUT THE

To find your nearest representative contact us at +1-847-367-4378 or international@aptsources.com

Associated Power Technologies

A DIVISION OF IKONIX USA

AC Power Sources for All Applications

To order or for more information please contact us toll-free +1-877-322-7693 or online aptsources.com in YouThe

[^0]: Why We Use Counts
 APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

[^1]: Why We Use Counts
 APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

